Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles
Author(s) -
Shaul Mukamel
Publication year - 2016
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4960049
Subject(s) - physics , spectroscopy , coincidence , photon , excited state , particle (ecology) , phase (matter) , nonlinear system , atomic physics , optics , molecular physics , computational physics , quantum mechanics , biology , medicine , alternative medicine , pathology , ecology
Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom