z-logo
open-access-imgOpen Access
Rotary motion of a micro-solid particle under a stationary difference of electric potential
Author(s) -
Tomo Kurimura,
Seori Mori,
Masako Miki,
Kenichi Yoshikawa
Publication year - 2016
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4958657
Subject(s) - rotation around a fixed axis , rotation (mathematics) , electric field , perpendicular , pulmonary surfactant , chemistry , cationic polymerization , micelle , chemical physics , phase (matter) , circular motion , vortex , dipole , molecular physics , mechanics , materials science , classical mechanics , physics , aqueous solution , organic chemistry , geometry , biochemistry , mathematics , quantum mechanics
The periodic rotary motion of spherical sub-millimeter-sized plastic objects is generated under a direct-current electric field in an oil phase containing a small amount of anionic or cationic surfactant. Twin-rotary motion is observed between a pair of counter-electrodes; i.e., two vortices are generated simultaneously, where the line between the centers of rotation lies perpendicular to the line between the tips of the electrodes. Interestingly, this twin rotational motion switches to the reverse direction when an anionic surfactant is replaced by a cationic surfactant. We discuss the mechanism of this self-rotary motion in terms of convective motion in the oil phase where nanometer-sized inverted micelles exist. The reversal of the direction of rotation between anionic and cationic surfactants is attributable to the difference in the charge sign of inverted micelles with surfactants. We show that the essential features in the experimental trends can be reproduced through a simple theoretical model, which supports the validity of the above mechanism.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom