Solar augmentation for process heat with central receiver technology
Author(s) -
Johannes P. Kotzé,
Philip du Toit,
Sebastian J. Bode,
James N. Larmuth,
Willem A. Landman,
Paul Gauché
Publication year - 2016
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.4949166
Subject(s) - heliostat , boiler (water heating) , coal , process (computing) , fuel supply , engineering , environmental science , process engineering , waste management , solar energy , computer science , electrical engineering , automotive engineering , operating system
Coal fired boilers are currently one of the most widespread ways to deliver process heat to industry. John Thompson Boilers (JTB) offer industrial steam supply solutions for industry and utility scale applications in Southern Africa. Transport cost add significant cost to the coal price in locations far from the coal fields in Mpumalanga, Gauteng and Limpopo. The Helio100 project developed a low cost, self-learning, wireless heliostat technology that requires no ground preparation. This is attractive as an augmentation alternative, as it can easily be installed on any open land that a client may have available. This paper explores the techno economic feasibility of solar augmentation for JTB coal fired steam boilers by comparing the fuel savings of a generic 2MW heliostat field at various locations throughout South Africa.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom