Communication: The cluster vapor to cluster solid transition
Author(s) -
Martin B. Sweatman,
Leo Lue
Publication year - 2016
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4948784
Subject(s) - cluster (spacecraft) , monte carlo method , cluster analysis , range (aeronautics) , chemical physics , colloidal particle , work (physics) , phase transition , statistical physics , materials science , chemistry , physics , colloid , computer science , thermodynamics , statistics , mathematics , machine learning , composite material , programming language
Until now, depletion induced transitions have been the hallmark of multicomponent systems only. Monte Carlo simulations reveal a depletion-induced phase transition from cluster vapor to cluster solid in a one-component fluid with competing short range and long range interactions. This confirms a prediction made by earlier theoretical work. Analysis of renormalized cluster-cluster and cluster-vapor interactions suggest that a cluster liquid is also expected within a very narrow range of model parameters. These insights could help identify the mechanisms of clustering in experiments and assist the design of colloidal structures through engineered self-assembly
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom