z-logo
open-access-imgOpen Access
Effect of the electrode material on the breakdown voltage and space charge distribution of propylene carbonate under impulse voltage
Author(s) -
Qing Yang,
Yang Jin,
Wenxia Sima,
Mengna Liu
Publication year - 2016
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4948441
Subject(s) - propylene carbonate , materials science , electrode , impulse (physics) , voltage , electric field , composite material , aluminium , copper , space charge , brass , impulse generator , metallurgy , electrical engineering , electrochemistry , chemistry , physics , quantum mechanics , engineering , electron
This paper reports three types of electrode materials (copper, aluminum, and stainless steel) that are used to measure the impulse breakdown voltage of propylene carbonate. The breakdown voltage of propylene carbonate with these electrode materials is different and is in decreasing order of stainless steel, copper, and aluminum. To explore how the electrode material affects the insulating properties of the liquid dielectric, the electric field distribution and space charge distribution of propylene carbonate under impulse voltage with the three electrode materials are measured on the basis of a Kerr electro-optic test. The space charge injection ability is highest for aluminum, followed by copper, and then the stainless steel electrodes. Furthermore, the electric field distortion rate decreased in the order of the aluminum, copper, and then the stainless steel electrode. This paper explains that the difference in the electric field distortion rate between the three electrode materials led to the difference in the impulse breakdown voltage of propylene carbonate

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom