The investigation of the diameter dimension effect on the Si nano-tube transistors
Author(s) -
M.-H. Liao,
Cherng-Shii Yeh,
ChangChun Lee,
C. -P. Wang
Publication year - 2016
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4945346
Subject(s) - transistor , materials science , cmos , optoelectronics , mosfet , nano , node (physics) , surface roughness , logic gate , nanotechnology , gate oxide , channel (broadcasting) , electrical engineering , voltage , engineering , physics , acoustics , composite material
The vertical gate-all-around (V-GAA) Si nano-tube (NT) devices with different diameter dimensions are studied in this work with the promising device performance. The V-GAA structure makes the transistor easy to be scaled down continuously to meet the complementary metal-oxide-semiconductor (CMOS) scaling requirements of the 7/10 nm technology node and beyond. The Si NT device with the hollow structure is demonstrated to have the capability to “deplete” and “screen-out” the out-of gate control carriers in the center of the NT and further result in the better device short channel control. Based on the study in this work, the V-GAA Si NT device with the optimized diameter dimension (=20 nm) can benefit the Ion-state current and reduce the Ioff-state stand-by power simultaneously, due to the less surface roughness scattering and the better short channel control characteristics. The proposed V-GAA Si NT device is regarded as one of the most promising candidates for the future application of the sub-7/10 nm logic era
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom