Dissipation in monotonic and non-monotonic relaxation to equilibrium
Author(s) -
Charlotte F. Petersen,
Denis J. Evans,
Stephen R. Williams
Publication year - 2016
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4941584
Subject(s) - dissipation , relaxation (psychology) , monotonic function , fluctuation dissipation theorem , conformal map , probability density function , distribution function , distribution (mathematics) , physics , function (biology) , statistical physics , fourier transform , classical mechanics , mathematical analysis , thermodynamics , mathematics , quantum mechanics , statistics , psychology , social psychology , evolutionary biology , biology
Using molecular dynamics simulations, we study field free relaxation from a non-uniform initial density, monitored using both density distributions and the dissipation function. When this density gradient is applied to colour labelled particles, the density distribution decays to a sine curve of fundamental wavelength, which then decays conformally towards a uniform distribution. For conformal relaxation, the dissipation function is found to decay towards equilibrium monotonically, consistent with the predictions of the relaxation theorem. When the system is initiated with a more dramatic density gradient, applied to all particles, non-conformal relaxation is seen in both the dissipation function and the Fourier components of the density distribution. At times, the system appears to be moving away from a uniform density distribution. In both cases, the dissipation function satisfies the modified second law inequality, and the dissipation theorem is demonstrated.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom