z-logo
open-access-imgOpen Access
Neutral gas temperature estimates and metastable resonance energy transfer for argon-nitrogen discharges
Author(s) -
Amelia D. Greig,
Christine Charles,
R. W. Boswell
Publication year - 2016
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.4939028
Subject(s) - argon , atomic physics , metastability , rotational–vibrational spectroscopy , nitrogen , plasma , ion , resonance (particle physics) , spectroscopy , physics , excited state , quantum mechanics
Rovibrational spectroscopy band fitting of the nitrogen (N2) second positive system is a technique used to estimate the neutral gas temperature of N2discharges, or atomic discharges with trace amounts of a N2 added. For mixtures involving argon and N2, resonant energy transfer between argon metastable atoms (Ar*) and N2 molecules may affect gas temperature estimates made using the second positive system. The effect of Ar* resonance energy transfer is investigated here by analyzing neutral gas temperatures of argon-N2 mixtures, for N2 percentages from 1% to 100%. Neutral gas temperature estimates are higher than expected for mixtures involving greater than 5% N2 addition, but are reasonable for argon with less than 5% N2 addition when compared with an analytic model for ion-neutral charge exchange collisional heating. Additional spatiotemporal investigations into neutral gas temperature estimates with 10% N2 addition demonstrate that although absolute temperature values may be affected by Ar* resonant energy transfer, spatiotemporal trends may still be used to accurately diagnose the discharge.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom