z-logo
open-access-imgOpen Access
Fast magnetic reconnection supported by sporadic small-scale Petschek-type shocks
Author(s) -
Takuya Shibayama,
K. Kusano,
Takahiro Miyoshi,
Takashi Nakabou,
G. Vekstein
Publication year - 2015
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.4934652
Subject(s) - plasmoid , physics , magnetic reconnection , magnetohydrodynamics , current sheet , magnetohydrodynamic drive , instability , astrophysical plasma , plasma , computational physics , mechanics , quantum mechanics
Standard magnetohydrodynamic (MHD) theory predicts reconnection rate that is far too slow to account for a wide variety of reconnection events observed in space and laboratory plasmas. Therefore, it was commonly accepted that some non-MHD (kinetic) effects play a crucial role in fast reconnection. A recently renewed interest in simple MHD models is associated with the so-called plasmoid instability of reconnecting current sheets. Although it is now evident that this effect can significantly enhance the rate of reconnection, many details of the underlying multiple-plasmoid process still remain controversial. Here, we report results of a high-resolution computer simulation which demonstrate that fast albeit intermittent magnetic reconnection is sustained by numerous small-scale Petschek-type shocks spontaneously formed in the current sheet due to its plasmoid instability.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom