z-logo
open-access-imgOpen Access
Microfluidic platform for assessing pancreatic islet functionality through dielectric spectroscopy
Author(s) -
Khalil Heileman,
Jamal Daoud,
Craig Hasilo,
Marco Gasparrini,
Steven Paraskevas,
Maryam Tabrizian
Publication year - 2015
Publication title -
biomicrofluidics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.634
H-Index - 63
ISSN - 1932-1058
DOI - 10.1063/1.4929652
Subject(s) - islet , microfluidics , transplantation , pancreatic islets , nanotechnology , dielectric spectroscopy , biomedical engineering , materials science , diabetes mellitus , computer science , chemistry , microbiology and biotechnology , biology , medicine , endocrinology , electrode , electrochemistry
Human pancreatic islets are seldom assessed for dynamic responses to external stimuli. Thus, the elucidation of human islet functionality would provide insights into the progression of diabetes mellitus, evaluation of preparations for clinical transplantation, as well as for the development of novel therapeutics. The objective of this study was to develop a microfluidic platform for in vitro islet culture, allowing the multi-parametric investigation of islet response to chemical and biochemical stimuli. This was accomplished through the fabrication and implementation of a microfluidic platform that allowed the perifusion of islet culture while integrating real-time monitoring using impedance spectroscopy, through microfabricated, interdigitated electrodes located along the microchamber arrays. Real-time impedance measurements provide important dielectric parameters, such as cell membrane capacitance and cytoplasmic conductivity, representing proliferation, differentiation, viability, and functionality. The perifusion of varying glucose concentrations and monitoring of the resulting impedance of pancreatic islets were performed as proof-of-concept validation of the lab-on-chip platform. This novel technique to elucidate the underlying mechanisms that dictate islet functionality is presented, providing new information regarding islet function that could improve the evaluation of islet preparations for transplantation. In addition, it will lead to a better understanding of fundamental diabetes-related islet dysfunction and the development of therapeutics through evaluation of potential drug effects

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom