A comparison of light-coupling into high and low index nanostructured photovoltaic thin films
Author(s) -
Thomas Pfadler,
Martin Stärk,
Eugen Zimmermann,
Goran D. Putnik,
Johannes Boneberg,
Jonas Weickert,
Lukas SchmidtMende
Publication year - 2015
Publication title -
apl materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.571
H-Index - 60
ISSN - 2166-532X
DOI - 10.1063/1.4921955
Subject(s) - materials science , thin film , photovoltaics , refractive index , optoelectronics , solar cell , photovoltaic system , ellipsometry , absorption (acoustics) , asymmetry , coupling (piping) , optics , electrode , active layer , nanotechnology , layer (electronics) , composite material , ecology , chemistry , physics , quantum mechanics , biology , thin film transistor
Periodically structured electrodes are typically introduced to thin-film photovoltaics for the purpose of light management. Highly effective light-trapping and optimal in-coupling of light is crucial to enhance the overall device performance in such thin-film systems. Here, wavelength-scale structures are transferred via direct laser interference patterning to electron-selective TiO2 electrodes. Two representative thin-film solar cell architectures are deposited on top: an organic solar cell featuring blended P3HT:PCBM as active material, and a hybrid solar cell with Sb2S3 as inorganic active material. A direct correlation in the asymmetry in total absorption enhancement and in structure-induced light in-coupling is spectroscopically observed for the two systems. The structuring is shown to be beneficial for the total absorption enhancement if a high n active material is deposited on TiO2, but detrimental for a low n material. The refractive indices of the employed materials are determined via spectroscopic ellipsometry. The study outlines that the macroscopic Fresnel equations can be used to investigate the spectroscopically observed asymmetry in light in-coupling at the nanostructured TiO2 active material interfaces by visualizing the difference in reflectivity caused by the asymmetry in refractive indices
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom