Cryogenic tritium-hydrogen-deuterium and deuterium-tritium layer implosions with high density carbon ablators in near-vacuum hohlraums
Author(s) -
N. B. Meezan,
L. Berzak Hopkins,
S. Le Pape,
L. Divol,
A. J. Mackin,
T. Döppner,
D. Ho,
O. S. Jones,
S. F. Khan,
T. Ma,
J. L. Milovich,
A. Pak,
J. S. Ross,
C. A. Thomas,
L. R. Benedetti,
D. K. Bradley,
P. M. Celliers,
D. S. Clark,
J. E. Field,
S. W. Haan,
N. Izumi,
G. A. Kyrala,
J. D. Moody,
P. K. Patel,
J. E. Ralph,
J. R. Rygg,
S. M. Sepke,
B. K. Spears,
R. Tommasini,
R. P. J. Town,
Juergen Biener,
R. M. Bionta,
E. Bond,
J. A. Caggiano,
M. J. Eckart,
M. Gatu Johnson,
G. P. Grim,
A. V. Hamza,
E. P. Hartouni,
R. Hatarik,
D. Hoover,
J. D. Kilkenny,
B. Kozioziemski,
J. J. Kroll,
J. M. McNaney,
A. Nikroo,
D. B. Sayre,
Michael Stadermann,
C. Wild,
Brian Yoxall,
O. L. Landen,
W. W. Hsing,
M. Edwards
Publication year - 2015
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.4921947
Subject(s) - implosion , national ignition facility , hohlraum , inertial confinement fusion , physics , thermonuclear fusion , area density , streak camera , deuterium , atomic physics , plasma diagnostics , nuclear physics , laser , optics , ignition system , plasma , thermodynamics
High Density Carbon (or diamond) is a promising ablator material for use in near-vacuum hohlraums, as its high density allows for ignition designs with laser pulse durations of <10 ns. A series of Inertial Confinement Fusion (ICF) experiments in 2013 on the National Ignition Facility [Moses et al., Phys. Plasmas 16, 041006 (2009)] culminated in a deuterium-tritium (DT) layered implosion driven by a 6.8 ns, 2-shock laser pulse. This paper describes these experiments and comparisons with ICF design code simulations. Backlit radiography of a tritium-hydrogen-deuterium (THD) layered capsule demonstrated an ablator implosion velocity of 385 km/s with a slightly oblate hot spot shape. Other diagnostics suggested an asymmetric compressed fuel layer. A streak camera-based hot spot self-emission diagnostic (SPIDER) showed a double-peaked history of the capsule self-emission. Simulations suggest that this is a signature of low quality hot spot formation. Changes to the laser pulse and pointing for a subsequent DT i...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom