Nuclear quantum effects on the high pressure melting of dense lithium
Author(s) -
Yexin Feng,
Ji Chen,
Dario Alfé,
Xin-Zheng Li,
Enge Wang
Publication year - 2015
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4907752
Subject(s) - phase diagram , lithium (medication) , phase (matter) , thermodynamics , quantum , materials science , melting temperature , crystallization , ab initio , molecular dynamics , chemical physics , condensed matter physics , chemistry , physics , computational chemistry , quantum mechanics , medicine , endocrinology , composite material
Using a self-developed combination of the thermodynamic integration and the ab initio path-integral molecular dynamics methods, we quantitatively studied the influence of nuclear quantum effects (NQEs) on the melting of dense lithium at 45 GPa. We find that although the NQEs significantly change the free-energies of the competing solid and liquid phases, the melting temperature (Tm) is lowered by only ∼15 K, with values obtained using both classical and quantum nuclei in close proximity to a new experiment. Besides this, a substantial narrowing of the solid/liquid free-energy differences close to Tm was observed, in alignment with a tendency that glassy states might form upon rapid cooling. This tendency was demonstrated by the dynamics of crystallization in the two-phase simulations, which helps to reconcile an important conflict between two recent experiments. This study presents a simple picture for the phase diagram of lithium under pressure. It also indicates that claims on the influence of NQEs on phase diagrams should be carefully made and the method adopted offers a robust solution for such quantitative analyses.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom