z-logo
open-access-imgOpen Access
Induced-charge electrokinetics in a conducting nanochannel with broken geometric symmetry: Towards a flexible control of ionic transport
Author(s) -
Cunlu Zhao,
Yongxin Song,
Chun Yang
Publication year - 2015
Publication title -
physics of fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 180
eISSN - 1089-7666
pISSN - 1070-6631
DOI - 10.1063/1.4906773
Subject(s) - electrokinetic phenomena , nanofluidics , electric field , microfluidics , nanotechnology , ionic bonding , physics , surface charge , electrohydrodynamics , microchannel , transport phenomena , chemical physics , polarizability , symmetry (geometry) , electrolyte , electric potential , mechanics , ion , materials science , voltage , electrode , geometry , mathematics , quantum mechanics , molecule
In the literature, conventional electrokinetics is widely used as a principle of operating nanofluidic devices. Different from the conventional electrokinetics involving nonpolarizable solid surfaces with fixed surface charge, induced-charge electrokinetic (ICEK) phenomena deal with polarizable surfaces with the ability of surface charge modulation through electric polarization under external electric fields. Because of several advantages, ICEK phenomena have drawn a great deal of attention in microfluidic community. Herein, we propose the first effort of extending the ICEK phenomena from microfluidics to nanofluidics. In particular, we report a numerical model for the ICEK phenomena in a tapered nanochannel with conducting (ideally polarizable) walls. It is shown that due to the broken geometric symmetry of the nanochannel, induced-charge electroosmotic flow inside the nanochannel exhibits a flow rectification such that electrolyte solution always flows from the narrow end of the nanochannel to the wide end for either a forward electric bias (electric field from the narrow to wide ends) or a reverse electric bias (electric field from the wide to narrow ends). In addition, we demonstrate that the ion selectivity of such tapered conducting nanochannel can be actively tuned to be cation-selective with a forward bias and anion-selective with a reverse bias. Promisingly, conducting nanochannels with broken geometric symmetry could be potentially used for constructing nanofluidic pumps with the unidirectional pumping capacity and ion selectors with the tuneable ionic selection.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom