Potential variation around grain boundaries in BaSi2 films grown on multicrystalline silicon evaluated using Kelvin probe force microscopy
Author(s) -
Masakazu Baba,
Kosuke O. Hara,
Daichi Tsukahara,
Kaoru Toko,
Noritaka Usami,
Takashi Sekiguchi,
Takashi Suemasu
Publication year - 2014
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.4904864
Subject(s) - materials science , substrate (aquarium) , kelvin probe force microscope , grain boundary , silicon , electron backscatter diffraction , diffraction , condensed matter physics , crystal (programming language) , electron diffraction , crystallography , optoelectronics , optics , chemistry , atomic force microscopy , nanotechnology , microstructure , metallurgy , physics , geology , oceanography , computer science , programming language
Potential variations across the grain boundaries (GBs) in a 100 nm thick undoped n-BaSi2 film on a cast-grown multicrystalline Si (mc-Si) substrate are evaluated using Kelvin probe force microscopy (KFM). The θ-2θ X-ray diffraction pattern reveals diffraction peaks, such as (201), (301), (410), and (411) of BaSi2. Local-area electron backscatter diffraction reveals that the a-axis of BaSi2 is tilted slightly from the surface normal, depending on the local crystal plane of the mc-Si. KFM measurements show that the potentials are not significantly disordered in the grown BaSi2, even around the GBs of mc-Si. The potentials are higher at GBs of BaSi2 around Si GBs that are formed by grains with a Si(111) face and those with faces that deviate slightly from Si(111). Thus, downward band bending occurs at these BaSi2 GBs. Minority carriers (holes) undergo a repelling force near the GBs, which may suppress recombination as in the case of undoped n-BaSi2 epitaxial films on a single crystal Si(111) substrate. The barrier height for hole transport across the GBs varies in the range from 10 to 55 meV. The potentials are also higher at the BaSi2 GBs grown around Si GBs composed of grains with Si(001) and Si(111) faces. The barrier height for hole transport ranges from 5 to 55 meV. These results indicate that BaSi2 GBs formed on (111)-dominant Si surfaces do not have a negative influence on the minority-carrier properties, and thus BaSi2 formed on underlayers, such as (111)-oriented Si or Ge and on (111)-oriented mc-Si, can be utilized as a solar cell active layer
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom