Flow control of an oblique shock wave reflection with micro-ramp vortex generators: Effects of location and size
Author(s) -
Rogier Giepman,
Ferry Schrijer,
B.W. van Oudheusden
Publication year - 2014
Publication title -
physics of fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 180
eISSN - 1089-7666
pISSN - 1070-6631
DOI - 10.1063/1.4881941
Subject(s) - physics , mechanics , particle image velocimetry , oblique shock , vortex , shock wave , shock (circulatory) , boundary layer , momentum (technical analysis) , bubble , reflection (computer programming) , flow separation , optics , mixing (physics) , flow (mathematics) , turbulence , medicine , finance , quantum mechanics , computer science , economics , programming language
This study investigates the influences of micro-ramp size and location on its effectiveness as a flow control device for oblique shock wave reflections. The effectiveness is measured in terms of the size of the shock-induced separation bubble and the reflected shock unsteadiness. Particle image velocimetry measurements were carried out on the interaction region and the mixing region between micro-ramp and interaction. The separation bubble is shown to be most sensitive to the momentum flux contained in the lower 43% of the incoming boundary layer. The momentum flux added to this region scales linearly with micro-ramp height and larger micro-ramps are shown to be more effective in stabilizing the interaction. Full boundary layer mixing is attained 5.7δ downstream of the micro-ramp and this forms a lower limit on the required distance between micro-ramp and the start of the interaction region. Typical reductions in the average separated area and the shock unsteadiness of 87% and 51%, respectively, were reco...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom