Communication: Nanosize-induced restructuring of Sn nanoparticles
Author(s) -
S. Sabet,
Payam Kaghazchi
Publication year - 2014
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4878735
Subject(s) - nanoparticle , materials science , band gap , amorphous solid , crystallization , density functional theory , nanotechnology , chemical physics , chemical engineering , crystallography , optoelectronics , chemistry , computational chemistry , engineering
Stabilities and structures of β- and α-Sn nanoparticles are studied using density functional theory. Results show that β-Sn nanoparticles are more stable. For both phases of Sn, nanoparticles smaller than 1 nm (~48 atoms) are amorphous and have a band gap between 0.4 and 0.7 eV. The formation of band gap is found to be due to amorphization. By increasing the size of Sn nanoparticles (1-2.4 nm), the degree of crystallization increases and the band gap decreases. In these cases, structures of the core of nanoparticles are bulk-like, but structures of surfaces on the faces undergo reconstruction. This study suggests a strong size dependence of electronic and atomic structures for Sn nanoparticle anodes in Li-ion batteries.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom