Structural stability and electronic properties of low-index surfaces of SnS
Author(s) -
Georgios A. Tritsaris,
Brad D. Malone,
Efthimios Kaxiras
Publication year - 2014
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.4874775
Subject(s) - materials science , stacking , band gap , stoichiometry , photovoltaic system , density functional theory , solar cell , optoelectronics , absorption (acoustics) , doping , electronic structure , thin film , grain boundary , chemical physics , nanotechnology , chemistry , computational chemistry , composite material , ecology , microstructure , organic chemistry , biology
Thin film photovoltaic cells are increasingly important for cost-effective solar energy harvesting. Layered SnS is a promising absorber material due to its high optical absorption in the visible and good doping characteristics. We use first-principles calculations based on density functional theory to study structures of low-index surfaces of SnS using stoichiometric and oxygen-containing structural models, in order to elucidate their possible effect on the efficiency of the photovoltaic device. We find that the surface energy is minimized for the surface with orientation parallel to the layer stacking direction. Compared to stoichiometric surfaces, the oxygen-containing surfaces exhibit fewer electronic states near the band gap. This reduction of near-gap surface states by oxygen should reduce recombination losses at grain boundaries and interfaces of the SnS absorber, and should be beneficial to the efficiency of the solar cell.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom