Atomistic simulation study of short pulse laser interactions with a metal target under conditions of spatial confinement by a transparent overlayer
Author(s) -
Eaman T. Karim,
Maxim V. Shugaev,
Chengping Wu,
Zhibin Lin,
Robert F. Hainsey,
Leonid V. Zhigilei
Publication year - 2014
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.4872245
Subject(s) - overlayer , materials science , laser , spallation , supercritical fluid , phase (matter) , chemical physics , optics , condensed matter physics , chemistry , physics , organic chemistry , quantum mechanics , neutron
The distinct characteristics of short pulse laser interactions with a metal target under conditions of spatial confinement by a solid transparent overlayer are investigated in a series of atomistic simulations. The simulations are performed with a computational model combining classical molecular dynamics (MD) technique with a continuum description of the laser excitation, electron-phonon equilibration, and electronic heat transfer based on two-temperature model (TTM). Two methods for incorporation of the description of a transparent overlayer into the TTM-MD model are designed and parameterized for Ag-silica system. The material response to the laser energy deposition is studied for a range of laser fluences that, in the absence of the transparent overlayer, covers the regimes of melting and resolidification, photomechanical spallation, and phase explosion of the overheated surface region. In contrast to the irradiation in vacuum, the spatial confinement by the overlayer facilitates generation of sustain...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom