Local structure change evidenced by temperature-dependent elastic measurements: Case study on Bi1/2Na1/2TiO3-based lead-free relaxor piezoceramics
Author(s) -
Robert Dittmer,
Wook Jo,
Kyle G. Webber,
Jacob L. Jones,
Jürgen Rödel
Publication year - 2014
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.4866092
Subject(s) - materials science , dielectric , condensed matter physics , phase transition , elastic modulus , ternary operation , saturation (graph theory) , dielectric response , atmospheric temperature range , modulus , thermodynamics , composite material , physics , optoelectronics , mathematics , combinatorics , computer science , programming language
The temperature-dependent Young's modulus Y(T) of the lead-free piezoceramics of 0.8Bi(1/2)Na(1/2)TiO(3)-0.2Bi(1/2)K(1/2)TiO(3) (20BKT) and 0.96(0.8Bi(1/2)Na(1/2)TiO(3)-0.2Bi(1/2)K(1/2)TiO(3))-0.04 BiZn1/2Ti1/2O3 (4BZT) is measured with the impulse excitation technique and contrasted with corresponding dielectric and structural data. While the dielectric properties suggest a phase transition, the high resolution XRD patterns remain virtually unchanged from room temperature up to high temperatures, confirming no change in their long-range order. In contrast, the elastic properties indicate a broad and diffuse ferroelastic transition denoted by a minimum in Y(T). By analogy to the elastic and dielectric data of PbZrxTi1-xO3 and PLZT, it is concluded that 20BKT and 4BZT are relaxors with polar nanoregions embedded in a metrically cubic matrix. Interestingly, no indication for the freezing temperature was reflected in any of the employed measurement techniques. From the saturation of Y(T), it is suggested that the Burns temperature may be approximated as 700 degrees C. Moreover, it is found that the modification with the ternary end-member BiZn1/2Ti1/2O3 results in an increase in Young's modulus. A comparison with the Bi1/2Na1/2TiO3-BaTiO3-K0.5Na0.5NbO3 yields the same results.open0
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom