Chaoticity threshold in magnetized plasmas: Numerical results in the weak coupling regime
Author(s) -
A. Carati,
Francesco Benfenati,
Alberto Maiocchi,
M. Zuin,
L. Galgani
Publication year - 2014
Publication title -
chaos an interdisciplinary journal of nonlinear science
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.971
H-Index - 113
eISSN - 1089-7682
pISSN - 1054-1500
DOI - 10.1063/1.4865255
Subject(s) - physics , coulomb , coupling (piping) , electron , plasma , magnetic field , condensed matter physics , coupling parameter , field (mathematics) , atomic physics , quantum mechanics , mathematics , mechanical engineering , engineering , pure mathematics
The present paper is a numerical counterpart to the theoretical work [Carati et al., Chaos 22, 033124 (2012)]. We are concerned with the transition from order to chaos in a one-component plasma (a system of point electrons with mutual Coulomb interactions, in a uniform neutralizing background), the plasma being immersed in a uniform stationary magnetic field. In the paper [Carati et al., Chaos 22, 033124 (2012)], it was predicted that a transition should take place when the electron density is increased or the field decreased in such a way that the ratio ωp/ωc between plasma and cyclotron frequencies becomes of order 1, irrespective of the value of the so-called Coulomb coupling parameter Γ. Here, we perform numerical computations for a first principles model of N point electrons in a periodic box, with mutual Coulomb interactions, using as a probe for chaoticity the time-autocorrelation function of magnetization. We consider two values of Γ (0.04 and 0.016) in the weak coupling regime Γ ≪ 1, with N up to 512. A transition is found to occur for ωp/ωc in the range between 0.25 and 2, in fairly good agreement with the theoretical prediction. These results might be of interest for the problem of the breakdown of plasma confinement in fusion machines.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom