A study of water clusters using the effective fragment potential and Monte Carlo simulated annealing
Author(s) -
Paul N. Day,
Ruth Pachter,
Mark S. Gordon,
Grant N. Merrill
Publication year - 2000
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.480775
Subject(s) - maxima and minima , monte carlo method , cluster (spacecraft) , simulated annealing , ab initio , energy minimization , molecular physics , potential energy , chemistry , chemical physics , atomic physics , statistical physics , computational chemistry , physics , algorithm , mathematical analysis , statistics , mathematics , organic chemistry , computer science , programming language
Simulated annealing methods have been used with the effective fragment potential to locate the lowest energy structures for the water clusters (H2O)n with n=6, 8, 10, 12, 14, 16, 18, and 20. The most successful method uses a local minimization on each Monte Carlo step. The effective fragment potential method yielded interaction energies in excellent agreement with those calculated at the ab initio Hartree–Fock level and was quite successful at predicting the same energy ordering as the higher-level perturbation theory and coupled cluster methods. Analysis of the molecular interaction energies in terms of its electrostatic, polarization, and exchange-repulsion/charge-transfer components reveals that the electrostatic contribution is the dominant term in determining the energy ordering of the minima on the (H2O)n potential energy surfaces, but that differences in the polarization and repulsion components can be important in some cases.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom