z-logo
open-access-imgOpen Access
Full counting statistics of stationary particle beams
Author(s) -
Jukka Kiukas,
A. Ruschhaupt,
Reinhard F. Werner
Publication year - 2013
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.4801780
Subject(s) - observable , realization (probability) , counting process , limit (mathematics) , mathematics , operator (biology) , statistics , state (computer science) , measure (data warehouse) , statistical physics , physics , mathematical analysis , quantum mechanics , computer science , biochemistry , chemistry , repressor , algorithm , database , transcription factor , gene
We present a general scheme for treating particle beams as many particle systems. This includes the full counting statistics and the requirements of Bose/Fermi symmetry. In the stationary limit, i.e., for longer and longer beams, the total particle number diverges, and a description in Fock space is no longer possible. We therefore extend the formalism to include stationary beams. These beams exhibit a well-defined "local" counting statistics, by which we mean the full counting statistics of all clicks falling into any given finite interval. We treat in detail a model of a source, creating particles in a fixed state, which then evolve under the free time evolution, and we determine the resulting stationary beam in the far field. In comparison to the one-particle picture we obtain a correction due to Bose/Fermi statistics, which depends on the emission rate. We also consider plane waves as stationary many particle states, and determine the distribution of intervals between successive clicks in such a beam.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom