z-logo
open-access-imgOpen Access
Synthesis of silver nanoparticle decorated multiwalled carbon nanotubes-graphene mixture and its heat transfer studies in nanofluid
Author(s) -
Tessy Theres Baby,
Sundara Ramaprabhu
Publication year - 2013
Publication title -
aip advances
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.421
H-Index - 58
ISSN - 2158-3226
DOI - 10.1063/1.4789404
Subject(s) - nanofluid , materials science , thermal conductivity , graphite , graphene , chemical engineering , ethylene glycol , volume fraction , carbon nanotube , nanoparticle , exfoliation joint , heat transfer , heat transfer coefficient , heat transfer enhancement , oxide , carbon fibers , nanotechnology , composite material , thermodynamics , composite number , metallurgy , physics , engineering
The present study describes a novel synthesis procedure for a hybrid nanostructure consisting of multiwalled carbon nanotubes (MWNT), hydrogen exfoliated graphene (HEG) and silver nanoparticles. Moreover, synthesis of nanofluids using the above hybrid material and their heat transfer properties are discussed. The hybrid structure of MWNT and HEG (MWNT-HEG) has been synthesized by a simple mixing of MWNT and graphite oxide (GO) followed by exfoliation of this mixture in hydrogen atmosphere. The sample has been characterized with different experimental techniques. After surface functionalization, this hybrid material is decorated with silver nanoparticles (Ag/(MWNT-HEG)) and dispersed in ethylene glycol (EG) without any surfactant. The thermal conductivity and convective heat transfer properties are measured for different volume fractions. An enhancement of ∼8% in thermal conductivity is obtained for a volume fraction of 0.04% at 25°C. The convective heat transfer coefficient of these nanofluids is determined using an in-house fabricated setup. The enhancement in heat transfer coefficient is about 570% for 0.005% volume fraction at the entrance of the pipe for Re = 250

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom