Rotational and vibrational temperatures in a hydrogen discharge with a magnetic X-point
Author(s) -
Tsanko Tsankov,
Kaoru Toko,
Uwe Czarnetzki
Publication year - 2012
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.4769853
Subject(s) - atomic physics , hydrogen , plasma , physics , ion , volume (thermodynamics) , vibrational temperature , range (aeronautics) , population , analytical chemistry (journal) , chemistry , materials science , excited state , thermodynamics , nuclear physics , demography , quantum mechanics , chromatography , sociology , composite material
A novel plasma source with a magnetic X-point has been developed to probe an alternative for cesium-free negative hydrogen ion production. This study presents first results for the gas and vibrational temperatures in the source at 1 Pa and various RF powers. The temperatures are obtained from analysis of the intensity distribution of the molecular Fulcher-α bands. The gas temperature increases with the RF power, while the vibrational temperature remains constant in the studied range of RF powers. Both quantities show no appreciable spatial dependence. The obtained high values of the vibrational temperatures indicate a high population of the vibrational levels, favourable for the volume negative ion production. A theoretical concept indicates the presence of an optimum value for the vibrational temperature at which the negative hydrogen ion yield by volume processes has a maximum. Coincidently, the measured value is close to this optimum. This indicates that the novel concept can provide certain advantages...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom