z-logo
open-access-imgOpen Access
Communication: Effect of the orbital-overlap dependence in the meta generalized gradient approximation
Author(s) -
Jianwei Sun,
Bing Xiao,
Adrienn Ruzsinszky
Publication year - 2012
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.4742312
Subject(s) - dimensionless quantity , kinetic energy , atomic orbital , orbital overlap , simple (philosophy) , density functional theory , physics , molecular orbital , statistical physics , materials science , computational physics , molecular physics , molecule , classical mechanics , thermodynamics , quantum mechanics , electron , epistemology , philosophy
We study for the first time the effect of the dependence of meta generalized gradient approximation (MGGA) for the exchange-correlation energy on its input, the kinetic energy density, through the dimensionless inhomogeneity parameter, α, that characterizes the extent of orbital overlap. This leads to a simple MGGA exchange functional, which interpolates between the single-orbital regime, where α = 0, and the slowly varying density regime, where α ≈ 1, and then extrapolates to α → ∞. When combined with a variant of the Perdew-Burke-Ernzerhof GGA correlation, the resulting MGGA performs equally well for atoms, molecules, surfaces, and solids.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom