On the “direct” calculation of thermal rate constants. II. The flux-flux autocorrelation function with absorbing potentials, with application to the O+HCl→OH+Cl reaction
Author(s) -
Ward H. Thompson,
William H. Miller
Publication year - 1997
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.474109
Subject(s) - reaction rate constant , hamiltonian (control theory) , autocorrelation , flux (metallurgy) , chemistry , atomic physics , physics , angular momentum , quantum mechanics , thermodynamics , kinetics , mathematics , statistics , organic chemistry , mathematical optimization
We present a method for obtaining the thermal rate constant directly (i.e., without first solving the state-to-state reactive scattering problem) from the time integral of the flux-flux autocorrelation function, Cff(t). The quantum mechanical trace involved in calculating Cff(t) is efficiently evaluated by taking advantage of the low rank of the Boltzmannized flux operator. The time propagation is carried out with a Hamiltonian which includes imaginary absorbing potentials in the reactant and product exit channels. These potentials eliminate reflection from the edge of the finite basis and ensure that Cff(t) goes to zero at long times. In addition, the basis can then be contracted to represent a smaller area around the interaction region. We present results of this method applied to the O+HCl reaction using the J-shifting and helicity conserving approximations to include nonzero total angular momentum. The calculated rate constants are compared to experimental and previous theoretical results. Finally, th...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom