z-logo
open-access-imgOpen Access
A unified formulation of the constant temperature molecular dynamics methods
Author(s) -
Shūichi Nosé
Publication year - 1984
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.447334
Subject(s) - canonical ensemble , constant (computer programming) , molecular dynamics , momentum (technical analysis) , distribution (mathematics) , grand canonical ensemble , angular momentum , space (punctuation) , statistical physics , physics , microcanonical ensemble , mathematics , mathematical physics , classical mechanics , mathematical analysis , quantum mechanics , monte carlo method , linguistics , statistics , philosophy , finance , computer science , economics , programming language
Three recently proposed constant temperature molecular dynamics methods by: (i) Nose (Mol. Phys., to be published); (ii) Hoover et al. [Phys. Rev. Lett. 48, 1818 (1982)], and Evans and Morriss [Chem. Phys. 77, 63 (1983)]; and (iii) Haile and Gupta [J. Chem. Phys. 79, 3067 (1983)] are examined analytically via calculating the equilibrium distribution functions and comparing them with that of the canonical ensemble. Except for effects due to momentum and angular momentum conservation, method (1) yields the rigorous canonical distribution in both momentum and coordinate space. Method (2) can be made rigorous in coordinate space, and can be derived from method (1) by imposing a specific constraint. Method (3) is not rigorous and gives a deviation of order N−1/2 from the canonical distribution (N the number of particles). The results for the constant temperature–constant pressure ensemble are similar to the canonical ensemble case.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom