z-logo
open-access-imgOpen Access
Electron diffraction studies of supersonic jets. II. Formation of benzene clusters
Author(s) -
Richard K. Heenan,
E. Valente,
Lawrence S. Bartell
Publication year - 1983
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.444548
Subject(s) - benzene , molecule , neon , electron diffraction , supercooling , diffraction , chemical physics , cluster (spacecraft) , electron , atomic physics , materials science , molecular physics , crystallography , chemistry , physics , optics , thermodynamics , organic chemistry , argon , quantum mechanics , computer science , programming language
Expansions of benzene at 1–10 mol % in neon or helium with various nozzle types have produced clusters of benzene molecules. Preliminary comparisons with intensities from the bulk liquid and with model calculations based on solid state crystal structures suggest that on the average the clusters are probably considerably larger than a 13 molecule unit, and have a vibrational temperature on the order of 100–150 K. Unlike clusters of spherical or quasispherical molecules previously found to pack in nearly crystalline arrays, benzene molecules appear to be unable to organize into regular arrays in the time of our experiments. Local order in clusters is similar but not identical to that in the solid, resembling that expected for a supercooled liquid. The present approach, exploiting several advantages of electron diffraction over alternative methods, shows promise as a new means of studying liquids or glasses

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom