z-logo
open-access-imgOpen Access
Electron bunching from a dc-biased, single-surface multipactor with realistically broad energy spectrum and emission angle of secondary electrons
Author(s) -
Dongwon Shin,
SeokGy Jeon,
Jung-Il Kim,
Geun-Ju Kim,
Min Sup Hur
Publication year - 2012
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.3685697
Subject(s) - physics , electron , atomic physics , secondary emission , plasma , secondary electrons , electron multiplier , nuclear physics
We studied the influences of wide energy spectrum and emission angle of secondary electrons on electron bunching from a dc-biased single surface multipactor. In our previous study of the same system, an ideally narrow energy spread of secondary electrons without emission angle was used in the analysis of the electron trajectory [M. S. Hur, J.-I. Kim, G.-J. Kim, and S.-G. Jeon, Phys. Plasmas 18, 033103 (2011) and S.-G. Jeon, J.-I. Kim, S.-T. Han, S.-S. Jung, and J. U. Kim, Phys. Plasmas 16, 073101 (2009)]. In this paper, we investigated the cases with realistic energy spectrum, which is featured by a wide energy spread and significant emission angle. To theoretically approach the matter of emission angle, we employed a concept of effective longitudinal velocity distribution. The theoretical results are verified by particle-in-cell (PIC) simulations. We also studied the electron bunching from a copper by PIC simulations, where we observed stable electron bunches with bunch width of approximately 80 mu m.open3

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom