z-logo
open-access-imgOpen Access
Core-to-Rydberg band shift and broadening of hydrogen bonded ammonia clusters studied with nitrogen K-edge excitation spectroscopy
Author(s) -
Takeshi Yamanaka,
Kiyohiko Tabayashi,
Osamu Takahashi,
Kenichiro Tanaka,
H. Namatame,
M. Taniguchi
Publication year - 2012
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.3673778
Subject(s) - rydberg formula , atomic physics , excited state , rydberg matter , chemistry , spectroscopy , excitation , molecular physics , ionization , physics , ion , organic chemistry , quantum mechanics
Nitrogen 1s (N 1s) core-to-Rydberg excitation spectra of hydrogen-bonded clusters of ammonia (AM) have been studied in the small cluster regime of beam conditions with time-of-flight (TOF) fragment-mass spectroscopy. By monitoring partial-ion-yield spectra of cluster-origin products, "cluster" specific excitation spectra could be recorded. Comparison of the "cluster" band with "monomer" band revealed that the first resonance bands of clusters corresponding to N 1s → 3sa(1)/3pe of AM monomer are considerably broadened. The changes of the experimental core-to-Rydberg transitions ΔFWHM (N 1s → 3sa(1)/3pe) = ~0.20/~0.50 eV compare well with the x ray absorption spectra of the clusters generated by using density functional theory (DFT) calculation. The broadening of the core-to-Rydberg bands in small clusters is interpreted as being primarily due to the splitting of non-equivalent core-hole N 1s states caused by both electrostatic core-hole and hydrogen-bonding (H(3)N···H-NH(2)) interactions upon dimerization. Under Cs dimer configuration, core-electron binding energy of H-N (H-donor) is significantly decreased by the intermolecular core-hole interaction and causes notable redshifts of core-excitation energies, whereas that of lone-pair nitrogen (H-acceptor) is slightly increased and results in appreciable blueshifts in the core-excitation bands. The result of the hydrogen-bonding interaction strongly appears in the n-σ* orbital correlation, destabilizing H-N donor Rydberg states in the direction opposite to the core-hole interaction, when excited N atom with H-N donor configuration strongly possesses the Rydberg component of anti-bonding σ* (N-H) character. Contributions of other cyclic H-bonded clusters (AM)(n) with n ≥ 3 to the spectral changes of the N 1s → 3sa(1)/3pe bands are also examined.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom