z-logo
open-access-imgOpen Access
Critical behavior of megabase-size DNA toward the transition into a compact state
Author(s) -
Yuko Yoshikawa,
Yuki Suzuki,
Kozo Yamada,
Wakao Fukuda,
Kenichi Yoshikawa,
Kunio Takeyasu,
Tadayuki Imanaka
Publication year - 2011
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.3666845
Subject(s) - dna , atomic force microscopy , crystallography , transition (genetics) , molecule , fluorescence , folding (dsp implementation) , biophysics , chemistry , chemical physics , nanotechnology , materials science , physics , biology , biochemistry , optics , gene , electrical engineering , organic chemistry , engineering
We studied the changes in the higher-order structure of a megabase-size DNA (S120-1 DNA) under different spermidine (SPD) concentrations through single-molecule observations using fluorescence microscopy (FM) and atomic force microscopy (AFM). We examined the difference between the folding transitions in S120-1 DNA and sub-megabase-size DNA, T4 DNA (166 kbp). From FM observations, it is found that S120-1 DNA exhibits intra-chain segregation as the intermediate state of transition, in contrast to the all-or-none nature of the transition on T4 DNA. Large S120-1 DNA exhibits a folding transition at lower concentrations of SPD than T4 DNA. AFM observations showed that DNA segments become aligned in parallel on a two-dimensional surface as the SPD concentration increases and that highly intense parallel alignment is achieved just before the compaction. S120-1 DNA requires one-tenth the SPD concentration as that required by T4 DNA to achieve the same degree of parallel ordering. We theoretically discuss the cause of the parallel ordering near the transition into a fully compact state on a two-dimensional surface, and argue that such parallel ordering disappears in bulk solution

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom