z-logo
open-access-imgOpen Access
Resistive cooling circuits for charged particle traps using crystal resonators
Author(s) -
T. Kaltenbacher,
F. Caspers,
M. Doser,
A. Kellerbauer,
Wolfgang Pribyl
Publication year - 2011
Publication title -
review of scientific instruments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 165
eISSN - 1089-7623
pISSN - 0034-6748
DOI - 10.1063/1.3663610
Subject(s) - resonator , resonance (particle physics) , electrical impedance , resistive touchscreen , rlc circuit , materials science , electronic circuit , inductance , optoelectronics , physics , electrical engineering , atomic physics , voltage , capacitor , quantum mechanics , engineering
The paper addresses a novel method to couple a signal from charged particles in a Penning trap to a high Q resonant circuit using a crystal resonator. Traditionally, the trap capacity is converted into a resonator by means of an inductance. The tuned circuit's Q factor is directly linked to the input impedance "seen" by the trapped particles at resonance frequency. This parallel resonance impedance is a measure of the efficiency of resistive cooling and thus it should be optimized. We propose here a commercially available crystal resonator since it exhibits a very high Q value and a parallel resonance impedance of several MΩ. The possibility to tune the parallel resonance frequency of the quartz results in filter behavior that allows covering a range of some tens of its 3dB bandwidth by means of tuning.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom