SPARSE X-RAY CT IMAGE RECONSTRUCTION USING ECME HARD THRESHOLDING METHODS
Author(s) -
Kun Qiu,
A. Dogandzic,
Donald O. Thompson,
Dale E. Chimenti
Publication year - 2011
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.3591889
Subject(s) - icon , thresholding , computer science , information retrieval , citation , download , filter (signal processing) , computer graphics (images) , world wide web , image (mathematics) , artificial intelligence , computer vision , programming language
We apply expectation‐conditional maximization either (ECME) hard thresholding algorithms to X‐ray computed tomography (CT) reconstruction, where we implement the sampling operator using the nonuniform fast Fourier transform (NUFFT). The measurements follow an underdetermined linear model, where the regression‐coefficient vector is a sum of an unknown deterministic sparse signal component and a zero‐mean white Gaussian component with an unknown variance. Our ECME schemes aim at maximizing this model’s likelihood function with respect to the sparse signal and variance of the random signal component. These schemes exploit signal sparsity in the discrete wavelet transform (DWT) domain and yield better reconstructions than the traditional filtered backprojection (FBP) approach, which is demonstrated via numerical examples. In contrast with FBP, our methods achieve artifact‐free reconstructions in undersampled and limited‐angle projection examples. We also compare the ECME schemes with a state‐of‐the‐art convex...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom