Shear flow-driven electrostatic instabilities in low density and low temperature pair-ion plasmas with and without electrons
Author(s) -
H. Saleem,
Nazia Batool,
Stefaan Poedts
Publication year - 2011
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.3589474
Subject(s) - plasma , physics , ion , instability , atomic physics , electron , shear flow , two stream instability , shear (geology) , electron temperature , electron density , mechanics , materials science , quantum mechanics , composite material
The shear flow-driven electrostatic instabilities are investigated in ideal low density, low temperature pair-ion-electron and pure pair-ion plasmas in several different cases, including homogeneous and inhomogeneous density effects. In uniform pair-ion-electron plasma, when the shear flow is of the order of the acoustic speed, the purely growing D’Angelo mode can give rise to electrostatic fields. In the case of an inhomogeneous plasma, the drift wave becomes unstable. The presence of negative ions, however, reduces the growth rate. If the positive and negative ions are not in thermal equilibrium with each other, then the shear flow also gives rise to an electrostatic instability in pure pair-ion plasma.status: publishe
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom