Novel methods to create multielectron bubbles in superfluid helium
Author(s) -
Jinghua Fang,
Anatoly Dementyev,
J. Tempere,
Isaac F. Silvera
Publication year - 2011
Publication title -
review of scientific instruments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 165
eISSN - 1089-7623
pISSN - 0034-6748
DOI - 10.1063/1.3553030
Subject(s) - superfluid helium 4 , helium , atomic physics , liquid helium , bubble , electron , physics , quantum tunnelling , protein filament , materials science , condensed matter physics , mechanics , nuclear physics , composite material
An equilibrium multielectron bubble (MEB) in liquid helium is a fascinating object with a spherical two-dimensional electron gas on its surface. We discuss two ways in which they have been created. For MEBs that have been observed in the dome of a cylindrical cell with an unexpectedly short lifetime, we show analytically why these MEBs can discharge by tunneling. Using a novel method, MEBs have been extracted from a vapor sheath around a hot filament in superfluid helium by applying electric fields up to 15 kV∕cm, and photographed with high-speed video. Charges as high as 1.6×10(-9) C (∼10(10) electrons) have been measured. The latter method provides a means of capture in an electromagnetic trap to allow the study of the extensive exciting properties of these elusive objects.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom