z-logo
open-access-imgOpen Access
Molecular structure determination from x-ray scattering patterns of laser-aligned symmetric-top molecules
Author(s) -
Phay J. Ho,
D. Starodub,
D. K. Saldin,
V. L. Shneerson,
A. Ourmazd,
Robin Santra
Publication year - 2009
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.3245404
Subject(s) - scattering , molecule , laser , molecular physics , crystallography , physics , optics , materials science , chemistry , quantum mechanics
We investigate the molecular structure information contained in the x-ray diffraction patterns of an ensemble of rigid CF(3)Br molecules aligned by an intense laser pulse at finite rotational temperature. The diffraction patterns are calculated at an x-ray photon energy of 20 keV to probe molecular structure at angstrom-scale resolution. We find that a structural reconstruction algorithm based on iterative phase retrieval fails to extract a reliable structure. However, the high atomic number of Br compared with C or F allows each diffraction pattern to be treated as a hologram. Using this approach, the azimuthal projection of the molecular electron density about the alignment axis may be retrieved

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom