Asymptotic stability of the stationary solution to an initial boundary value problem for the Mullins equation of fourth order
Author(s) -
Peicheng Zhu
Publication year - 2009
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.3227656
Subject(s) - mathematics , mathematical analysis , boundary value problem , norm (philosophy) , initial value problem , infinity , exponential stability , order (exchange) , stationary solution , energy method , physics , finance , nonlinear system , quantum mechanics , political science , law , economics
In the present article we first study the existence of the stationary solution to an initial boundary value problem for the Mullins equation of fourth order, which was proposed by Mullins [“Two-dimensional motion of idealized grain boundaries,” J. Appl. Phys. 27, 900 (1956)] to describe the groove development, due to the surface diffusion, at the grain boundaries of a heated polycrystal. Then employing an energy method we prove that this stationary solution is asymptotically stable in a suitable norm as time goes to infinity.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom