Characterization of thick film poly(triarylamine) semiconductor diodes for direct x-ray detection
Author(s) -
Akarin Intaniwet,
C. A. Mills,
Maxim Shkunov,
Heiko Thiem,
Joseph L. Keddie,
P.J. Sellin
Publication year - 2009
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.3225909
Subject(s) - materials science , diode , optoelectronics , photocurrent , photoconductivity , thin film , irradiation , indium tin oxide , semiconductor , quantum efficiency , nanotechnology , physics , nuclear physics
Thick film (≥5 μm thick) semiconducting polymer diodes incorporating poly(triarylamine) (PTAA) have been produced and applied as direct x-ray detectors. Experiments determined that a rectifying diode behavior persists when increasing the thickness of the active layer above typical thin film thicknesses (<1 μm), and the electrical conduction mechanism of the diodes has been identified. Direct current and photoconductivity measurements on indium tin oxide/poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate)/PTAA/metal diodes confirm that carrier conduction occurs via a Poole–Frenkel mechanism. The energy band structure of diodes (having gold or aluminum top electrodes) has been elucidated and used to explain the resulting electrical characteristics. Theoretical calculations show that, upon irradiation with x-rays, the diode quantum efficiency increases with increasing polymer film thickness. The diodes produced here display characteristics similar to their thin film analogs, meaning that they may be oper...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom