z-logo
open-access-imgOpen Access
Experimental and numerical results on three-dimensional instabilities in a rotating disk–tall cylinder flow
Author(s) -
Jens Nørkær Sørensen,
Alexander Gelfgat,
И. В. Наумов,
Robert Mikkelsen
Publication year - 2009
Publication title -
physics of fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 180
eISSN - 1089-7666
pISSN - 1070-6631
DOI - 10.1063/1.3133262
Subject(s) - physics , instability , reynolds number , mechanics , particle image velocimetry , cylinder , wavenumber , radius , flow (mathematics) , flow visualization , rotational symmetry , mach number , optics , classical mechanics , turbulence , geometry , mathematics , computer security , computer science
The three-dimensional axisymmetry-breaking instability of axisymmetric flow between a rotating lid and a stationary cylinder is analyzed both numerically and experimentally for the case of tall cylinders with the height/radius aspect ratio between 3.3 and 5.5. A complete stability diagram for the primary three-dimensional instability is obtained experimentally and computed numerically. The instability sets in due to different three-dimensional disturbance modes that are characterized by different azimuthal wavenumbers. The critical Reynolds numbers and associated frequencies are identified for each mode. The onset of three-dimensional flow behavior is measured by combining the high spatial resolution of particle image velocimetry and the temporal accuracy of laser Doppler anemometry. The results are compared to the numerical stability analysis. The measured onset of three dimensionality is in a good agreement with the numerical results. Disagreements observed in supercritical regimes can be explained by s...

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom