Dependence of Cavitation Bubble Size on Pressure Amplitude at Therapeutic Levels
Author(s) -
Kelsey J. Carvell,
Timothy A. Bigelow,
Emad S. Ebbini
Publication year - 2009
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.3131472
Subject(s) - icon , citation , computer science , information retrieval , download , publishing , filter (signal processing) , world wide web , art , computer vision , literature , programming language
High‐intensity, focused ultrasound therapy is a minimally invasive therapy technique that is effective and relatively safe. It can be used in areas including histotripsy, thermal ablation, and administering medication. Inertial cavitation is used to improve these therapy methods. The purpose of this study was to determine the effect of pressure amplitude on cavitation resonance frequency/bubble size at therapeutic field levels. Earlier work has indicated that the resonance size depends on pressure amplitude; however, the investigation only considered pressure amplitudes up to 1 MPa [1]. Our study was conducted by simulating the response of bubbles to linearly propagating sine waves using the Gilmore‐Akulichev formulation to solve for the bubble response. The frequency of the sine wave varied from 1 to 5 MHz while the amplitude of the sine wave varied from 0.0001 to 9 MPa. The resonance size for a particular frequency of excitation and amplitude was determined by finding the initial bubble size that result...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom