z-logo
open-access-imgOpen Access
A simple method for the analysis of neutron resonance capture spectra
Author(s) -
Martijn C. Clarijs,
V.R. Bom,
C.W.E. van Eijk
Publication year - 2009
Publication title -
journal of applied physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.699
H-Index - 319
eISSN - 1089-7550
pISSN - 0021-8979
DOI - 10.1063/1.3094010
Subject(s) - collimated light , neutron , resonance (particle physics) , neutron capture , spectral line , elemental analysis , computer science , materials science , neutron scattering , visualization , physics , computational physics , optics , nuclear physics , chemistry , artificial intelligence , atomic physics , astronomy , laser , organic chemistry
Neutron resonance capture analysis (NRCA) is a method used to determine the bulk composition of various kinds of objects and materials. It is based on analyzing direct capture resonance peaks. However, the analysis is complicated by scattering followed by capture effects in the object itself. These effects depend on the object’s shape and size. In this paper the new Delft elemental analysis program (DEAP) is presented which can automatically and quickly analyze multiple NRCA spectra in a practical and simple way, yielding the elemental bulk composition of an object, largely independent of its shape and size. The DEAP method is demonstrated with data obtained with a Roman bronze water tap excavated in Nijmegen (The Netherlands). DEAP will also be used in the framework of the Ancient Charm project as data analysis program for neutron resonance capture imaging (NRCI) experiments. NRCI provides three-dimensional visualization and quantification of the internal structure of archaeological objects by performing scanning measurements with narrowly collimated neutron beams on archaeological objects in computed tomography based experimental setups. The large amounts (hundreds to thousands) of spectra produced during a NRCI experiment can automatically and quickly be analyzed by DEAP

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom