z-logo
open-access-imgOpen Access
Spin-waves in dilute antiferromagnets
Author(s) -
W. K. Holcomb,
Amanda Harris
Publication year - 1975
Publication title -
aip conference proceedings
Language(s) - English
Resource type - Conference proceedings
SCImago Journal Rank - 0.177
H-Index - 75
eISSN - 1551-7616
pISSN - 0094-243X
DOI - 10.1063/1.30000
Subject(s) - physics , isotropy , spin wave , condensed matter physics , spin (aerodynamics) , envelope (radar) , resonance (particle physics) , dilution , lattice (music) , heisenberg model , quantum mechanics , antiferromagnetism , ferromagnetism , thermodynamics , telecommunications , radar , computer science , acoustics
The effect of dilution on spin waves in isotropic Heisenberg antiferromagnets is studied. The model includes only nearest‐neighbor interactions for a bcc lattice and spin‐wave interactions are neglected, i.e. the results are correct in the limit s→∞. The dynamical susceptibility X (?,ω) and inelastic neutron cross section are obtained for arrays 8192 sites randomly occupied by a concentration c of magnetic ions. For a given array the calculation is done by inverting the dynamical matrix and thus is essentially exact. Our results are as follows. For large k we find that Ising‐like resonances corresponding to different numbers of occupied neighboring sites become increasingly prominent as c is decreased. The envelope of these resonances agrees with previous results using the coherent potential approximation where fluctuations in environment are suppressed. For small k we find a single spinwave resonance broadened by the random dilution. The application of these results to MncZn1−cF2 is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom