z-logo
open-access-imgOpen Access
Mass and position determination of attached particles on cantilever based mass sensors
Author(s) -
Søren Dohn,
Winnie Edith Svendsen,
Anja Boisen,
Ole Hansen
Publication year - 2007
Publication title -
review of scientific instruments
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 165
eISSN - 1089-7623
pISSN - 0034-6748
DOI - 10.1063/1.2804074
Subject(s) - cantilever , position (finance) , microscale chemistry , materials science , particle (ecology) , bending , physics , composite material , oceanography , mathematics education , mathematics , finance , economics , geology
An analytical expression relating mass and position of a particle attached on a cantilever to the resulting change in cantilever resonant frequency is derived. Theoretically, the position and mass of the attached particle can be deduced by combining measured resonant frequencies of several bending modes. This finding is verified experimentally using a microscale cantilever with and without an attached gold bead. The resonant frequencies of several bending modes are measured as a function of the bead position. The bead mass and position calculated from the measured resonant frequencies are in good agreement with the expected mass and the position measured.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom