z-logo
open-access-imgOpen Access
Solvation pressure in chloroform
Author(s) -
Hannes Hübel,
David A. Faux,
R.B. Jones,
D. J. Dunstan
Publication year - 2006
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.2199531
Subject(s) - solvation , chemistry , chloroform , hydrostatic pressure , vapor pressure , raman spectroscopy , molecular dynamics , molecule , thermodynamics , computational chemistry , organic chemistry , optics , physics
Molecular dynamics (MD) simulations of chloroform vapor and liquid at normal temperature and pressure and liquid under hydrostatic pressure are presented, giving bond lengths and vibrational frequencies as functions of pressure. The change in bond lengths between vapor and liquid at normal temperature and pressure is consistent with a pressure equivalent to the cohesive energy density (CED) of the liquid, supporting the solvation pressure model which predicts that solvated molecules or nanoparticles experience a pressure equal to the CED of the liquid. Experimental data for certain Raman frequencies of chloroform in the vapor phase, in the liquid, and in the liquid under pressure are presented and compared to MD. Results for C-Cl vibrational modes are in general agreement with the solvation pressure model whereas frequencies associated with the C-H bond are not. The results demonstrate that masking interactions exist in the real liquid that can be reduced or eliminated in simplified simulations.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom