Drift resonance in high density non-neutral plasmas
Author(s) -
D. J. Kaup
Publication year - 2006
Publication title -
physics of plasmas
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.75
H-Index - 160
eISSN - 1089-7674
pISSN - 1070-664X
DOI - 10.1063/1.2199227
Subject(s) - physics , plasma , ponderomotive force , instability , oscillation (cell signaling) , saturation (graph theory) , amplitude , amplifier , diffusion , electron , atomic physics , computational physics , quantum electrodynamics , mechanics , optics , quantum mechanics , mathematics , optoelectronics , cmos , combinatorics , biology , genetics
Theoretical studies of the operation of crossed-field electron vacuum devices such as magnetrons and crossed-field amplifiers (CFA) have usually centered on their initial growth, taking this as an indication of their operating modes. In such an analysis one solves the equations for the density profile, the operating frequency, the growth rate, and other features of these devices. What one really obtains then are only the conditions for the device to turn on. The dominant interaction in this stage is a Rayleigh-type instability which initiates a quasilinear diffusion process whereby the electron density profile redistributes itself into a profile which will be in equilibrium with the ponderomotive-like forces produced by the growing rf fields. Eventually the rf fields will saturate and an operating device will settle into a stationary operating regime. This stage of a device’s operation is called the “saturation stage.” This latter stage involves a different set of physical interactions from the initiation...
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom