Vacancy-engineering implants for high boron activation in silicon on insulator
Author(s) -
Andrew J. Smith,
N. E. B. Cowern,
R. Gwilliam,
B.J. Sealy,
B. Colombeau,
E. J. H. Collart,
S. Gennaro,
D. Giubertoni,
M. Bersani,
Mario Barozzi
Publication year - 2006
Publication title -
applied physics letters
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.182
H-Index - 442
eISSN - 1077-3118
pISSN - 0003-6951
DOI - 10.1063/1.2178487
Subject(s) - silicon , materials science , boron , silicon on insulator , fabrication , vacancy defect , doping , optoelectronics , epitaxy , insulator (electricity) , ion implantation , nanotechnology , crystallography , chemistry , ion , organic chemistry , medicine , alternative medicine , pathology , layer (electronics)
The formation of boron interstitial clusters is a key limiting factor for the fabrication of highly conductive ultrashallow doped regions in future silicon-based device technology. Optimized vacancy engineering strongly reduces boron clustering, enabling low-temperature electrical activation to levels rivalling what can be achieved with conventional preamorphization and solid-phase epitaxial regrowth. An optimized 160keV silicon implant in a 55∕145nm silicon-on-insulator structure enables stable activation of a 500eV boron implant to a concentration ∼5×1020cm−3.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom