z-logo
open-access-imgOpen Access
Exact and quasiexact solvability of second-order superintegrable quantum systems: I. Euclidean space preliminaries
Author(s) -
E. G. Kalnins,
Willard Miller,
G. S. Pogosyan
Publication year - 2006
Publication title -
journal of mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.708
H-Index - 119
eISSN - 1089-7658
pISSN - 0022-2488
DOI - 10.1063/1.2174237
Subject(s) - polynomial , euclidean space , separable space , mathematics , order (exchange) , space (punctuation) , hypergeometric distribution , separation of variables , pure mathematics , mathematical analysis , partial differential equation , finance , economics , linguistics , philosophy
We show that second-order superintegrable systems in two-dimensional and three-dimensional Euclidean space generate both exactly solvable (ES) and quasiexactly solvable (QES) problems in quantum mechanics via separation of variables, and demonstrate the increased insight into the structure of such problems provided by superintegrability. A principal advantage of our analysis using nondegenerate superintegrable systems is that they are multiseparable. Most past separation of variables treatments of QES problems via partial differential equations have only incorporated separability, not multiseparability. Also, we propose another definition of ES and QES. The quantum mechanical problem is called ES if the solution of Schrödinger equation can be expressed in terms of hypergeometric functions mFn and is QES if the Schrödinger equation admits polynomial solutions with coefficients necessarily satisfying a three-term or higher order of recurrence relations. In three dimensions we give an example of a system that is QES in one set of separable coordinates, but is not ES in any other separable coordinates. This example encompasses Ushveridze's tenth-order polynomial QES problem in one set of separable coordinates and also leads to a fourth-order polynomial QES problem in another separable coordinate set

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom