On unidirectional flight of a free flapping wing
Author(s) -
Nicolas Vandenberghe,
Stephen Childress,
Jun Zhang
Publication year - 2006
Publication title -
physics of fluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.188
H-Index - 180
eISSN - 1089-7666
pISSN - 1070-6631
DOI - 10.1063/1.2148989
Subject(s) - wing , flapping , physics , amplitude , mechanics , wing loading , asymmetry , instability , insect flight , aerospace engineering , aerodynamics , angle of attack , optics , engineering , quantum mechanics , thermodynamics
International audienceWe study the dynamics of a rigid, symmetric wing that is flapped vertically in a fluid. The motion of the wing in the horizontal direction is not constrained. Above a critical flapping frequency, forward flight arises as the wing accelerates to a terminal state of constant speed. We describe a number of measurements which supplement our previous work. These include (a) a study of the initial transition to forward flight near the onset of the instability, (b) the separate effects of flapping amplitude and frequency, (c) the effect of wing thickness, (d) the effect of asymmetry of the wing planform, and (e) the response of the wing to an added resistance. Our results emphasize the robustness of the mechanisms determining the forward flight speed as observed in our previous study
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom