z-logo
open-access-imgOpen Access
NMR measurements of hyperpolarized He3 gas diffusion in high porosity silica aerogels
Author(s) -
Geneviève Tastevin,
Pierre-Jean Nacher
Publication year - 2005
Publication title -
the journal of chemical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.071
H-Index - 357
eISSN - 1089-7690
pISSN - 0021-9606
DOI - 10.1063/1.1997130
Subject(s) - aerogel , diffusion , porosity , materials science , porous medium , attenuation , gaseous diffusion , pulsed field gradient , magnetic field , nitrogen gas , analytical chemistry (journal) , nuclear magnetic resonance , chemistry , thermodynamics , composite material , optics , chromatography , physics , electrode , quantum mechanics
Hyperpolarized 3He is used to nondestructively probe by NMR the structure of custom-made and commercial silica aerogels (97% and 98.5% porous). Large spin-echo signals are obtained at room temperature and very low magnetic field (2mT) even with small mounts of gas. Attenuation induced by applied field gradients results from the combined effects of gas diffusion and confinement by the porous medium on atomic motion. Nitrogen is used as a buffer gas to reach equivalent 3He pressures ranging from 5 mbars to 3.5 bars. The observed pressure dependence suggests a non-uniform structure of the aerogels on length scales up to tens of micrometers. A description by broad phenomenological distributions of mean free paths is proposed, and quantitatively discussed by comparison to numerical calculations. The investigated aerogel samples exhibit different effective diffusion characteristics despite comparable nominal porosities

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom